By M. Tsfasman, S.G. Vladut

1. Codes.- 1.1. Codes and their parameters.- 1.2. Examples and constructions.- 1.3. Asymptotic problems.- 2. Curves.- 2.1. Algebraic curves.- 2.2. Riemann-Roch theorem.- 2.3. Rational points.- 2.4. Elliptic curves.- 2.5. Singular curves.- 2.6. rate reductions and schemes.- three. AG-Codes.- 3.1. structures and properties.- 3.2. Examples.- 3.3. Decoding.- 3.4. Asymptotic results.- four. Modular Codes.- 4.1. Codes on classical modular curves.- 4.2. Codes on Drinfeld curves.- 4.3. Polynomiality.- five. Sphere Packings.- 5.1. Definitions and examples.- 5.2. Asymptotically dense packings.- 5.3. quantity fields.- 5.4. Analogues of AG-codes.- Appendix. precis of effects and tables.- A.1. Codes of finite length.- A.1.1. Bounds.- A.1.2. Parameters of yes codes.- A.1.3. Parameters of convinced constructions.- A.1.4. Binary codes from AG-codes.- A.2. Asymptotic bounds.- A.2.1. checklist of bounds.- A.2.2. Diagrams of comparison.- A.2.3. Behaviour on the ends.- A.2.4. Numerical values.- A.3. extra bounds.- A.3.1. consistent weight codes.- A.3.2. Self-dual codes.- A.4. Sphere packings.- A.4.1. Small dimensions.- A.4.2. yes families.- A.4.3. Asymptotic results.- writer index.- record of symbols.

**Read Online or Download Algebraic-Geometric Codes PDF**

**Similar algebraic geometry books**

**Geometric Models for Noncommutative Algebra **

The quantity relies on a path, "Geometric types for Noncommutative Algebras" taught by way of Professor Weinstein at Berkeley. Noncommutative geometry is the examine of noncommutative algebras as though they have been algebras of services on areas, for instance, the commutative algebras linked to affine algebraic forms, differentiable manifolds, topological areas, and degree areas.

**Arrangements, local systems and singularities: CIMPA Summer School, Istanbul, 2007**

This quantity contains the Lecture Notes of the CIMPA/TUBITAK summer season university preparations, neighborhood structures and Singularities held at Galatasaray collage, Istanbul in the course of June 2007. the amount is meant for a wide viewers in natural arithmetic, together with researchers and graduate scholars operating in algebraic geometry, singularity conception, topology and similar fields.

**Algebraic Functions and Projective Curves**

This ebook presents a self-contained exposition of the idea of algebraic curves with out requiring any of the must haves of contemporary algebraic geometry. The self-contained remedy makes this significant and mathematically valuable topic obtainable to non-specialists. whilst, experts within the box will be to find a number of strange subject matters.

Das vorliegende Buch beruht auf Vorlesungen und Seminaren für Studenten mittlerer und höherer Semester im Anschluß an eine Einführung in die komplexe Funktionentheorie. Die Theorie Riemannscher Flächen wird als ein Mikrokosmos der Reinen Mathematik dargestellt, in dem Methoden der Topologie und Geometrie, der komplexen und reellen research sowie der Algebra zusammenwirken, um die reichhaltige Struktur dieser Flächen aufzuklären und an vielen Beispielen und Bildern zu erläutern, die in der historischen Entwicklung eine Rolle spielten.

- CRC standard curves and surfaces with Mathematica
- Steven Dale Cutkosky
- Automorphisms in Birational and Affine Geometry: Levico Terme, Italy, October 2012
- The Crystals Associated to Barsotti-Tate Groups with Applications to Abelian Schemes
- An Introduction to Commutative Algebra: From the Viewpoint of Normalization
- Vector Bundles on Complex Projective Spaces: With an Appendix by S. I. Gelfand

**Extra info for Algebraic-Geometric Codes**

**Example text**

Whenever q n-k there exists a linear < [n,k,d]q-code c Proof: We are going to construct a dual [n,k,d]qsystem Q c W, we take any dim W = n - k For non-zero vector. Suppose that we have already constructed a system consisting of i vectors Ql' ••• , Q i such that any (d - 1) of them are linearly independent. consider the set Si of vectors which are linear combinations of at most (d - 2) elements from {Ql, ... ). (q - 1) j If Hi < IWI we are able to choose Qi+l II! Si . Then any (d - 1) vectors from the set {Ql' ••• ,Qi+l} are linearly independent.

3. [n,k,d]q-code C. H d Show that any (d - 1) columns of H n-k IFq and there linearly dependent columns. According to our definition (n - k) is also called a ~ n - k H' such has H linearly independent rows. language, any matrix r H·x = 0 ). be a parity-check matrix of an are linearly independent (as vectors in exist (since the C is equivalent to the equality e C is H) that Sometimes, H'·x parity-check matrix. rows, only (n - k) n = 0 columns and by abuse of iff Any such x e C , H' of which are independent.

L l=O where looking g(P i ) = 0 s j s t = 0, - 1 , are indeterminants. +l y{e .. p~ L L y{S j+l l=O 1. e'P {Y e } g' (x) 1. 1. e . ) 1. we are 1. 0 1. n. Fj(X) L k=O ~eI,~*J for any j e I b k k ·X we have e .. F . (P . ) . ) ~ = L ieI t-1 'r' L k=O J ~ ~ t-1 L e .. · pkH. ~ ~ Therefore g' (P j) = 0 for any j e I , i. e. solution (up to a multiplicative constant). Decomposing locators I. L e . p~ ~ ~ = s J. g is the only into factors we find the set of error system solve the us now Let o :S j :S a (in indeterminants e i ).